Логический элемент исключающее или. Битовые операции Исключающее или в русском языке

В этой статье я расскажу вам о том, как работают битовые операции. С первого взгляда они могут показаться вам чем-то сложным и бесполезным, но на самом деле это совсем не так. В этом я и попытаюсь вас убедить.

Введение

Побитовые операторы проводят операции непосредственно на битах числа, поэтому числа в примерах будут в двоичной системе счисления.

Я расскажу о следующих побитовых операторах:

  • | (Побитовое ИЛИ (OR)),
  • & (Побитовое И (AND)),
  • ^ (Исключающее ИЛИ (XOR)),
  • ~ (Побитовое отрицание (NOT)),
  • << (Побитовый сдвиг влево),
  • >> (Побитовый сдвиг вправо).

Битовые операции изучаются в дискретной математике, а также лежат в основе цифровой техники, так как на них основана логика работы логических вентилей - базовых элементов цифровых схем. В дискретной математике, как и в цифровой технике, для описания их работы используются таблицы истинности. Таблицы истинности, как мне кажется, значительно облегчают понимание битовых операций, поэтому я приведу их в этой статье. Их, тем не менее, почти не используют в объяснениях побитовых операторов высокоуровневых языков программирования.

О битовых операторах вам также необходимо знать:

  1. Некоторые побитовые операторы похожи на операторы, с которыми вы наверняка знакомы (&&, ||). Это потому, что они на самом деле в чем-то похожи. Тем не менее, путать их ни в коем случае нельзя.
  2. Большинство битовых операций являются операциями составного присваивания.

Побитовое ИЛИ (OR)

Побитовое ИЛИ действует эквивалентно логическому ИЛИ, но примененному к каждой паре битов двоичного числа. Двоичный разряд результата равен 0 только тогда, когда оба соответствующих бита в равны 0. Во всех других случаях двоичный результат равен 1. То есть, если у нас есть следующая таблица истинности:

38 | 53 будет таким:

A 0 0 1 0 0 1 1 0
B 0 0 1 1 0 1 0 1
A | B 0 0 1 1 0 1 1 1

В итоге мы получаем 110111 2 , или 55 10 .

Побитовое И (AND)

Побитовое И - это что-то вроде операции, противоположной побитовому ИЛИ. Двоичный разряд результата равен 1 только тогда, когда оба соответствующих бита операндов равны 1. Другими словами, можно сказать, двоичные разряды получившегося числа - это результат умножения соответствующих битов операнда: 1х1 = 1, 1х0 = 0. Побитовому И соответствует следующая таблица истинности:

Пример работы побитового И на выражении 38 & 53:

A 0 0 1 0 0 1 1 0
B 0 0 1 1 0 1 0 1
A & B 0 0 1 0 0 1 0 0

Как результат, получаем 100100 2 , или 36 10 .

С помощью побитового оператора И можно проверить, является ли число четным или нечетным. Для целых чисел, если младший бит равен 1, то число нечетное (основываясь на преобразовании двоичных чисел в десятичные). Зачем это нужно, если можно просто использовать %2 ? На моем компьютере, например, &1 выполняется на 66% быстрее. Довольно неплохое повышение производительности, скажу я вам.

Исключающее ИЛИ (XOR)

Разница между исключающим ИЛИ и побитовым ИЛИ в том, что для получения 1 только один бит в паре может быть 1:

Например, выражение 138^43 будет равно…

A 1 0 0 0 1 0 1 0
B 0 0 1 0 1 0 1 1
A ^ B 1 0 1 0 0 0 0 1

… 10100001 2 , или 160 10

С помощью ^ можно поменять значения двух переменных (имеющих одинаковый тип данных) без использования временной переменной.

Также с помощью исключающего ИЛИ можно зашифровать текст. Для этого нужно лишь итерировать через все символы, и ^ их с символом-ключом. Для более сложного шифра можно использовать строку символов:

String msg = "This is a message"; char message = msg.toCharArray(); String key = ".*)"; String encryptedString = new String(); for(int i = 0; i< message.length; i++){ encryptedString += message[i]^key.toCharArray(); }

Исключающее ИЛИ не самый надежный способ шифровки, но его можно сделать частью шифровального алгоритма.

Побитовое отрицание (NOT)

Побитовое отрицание инвертирует все биты операнда. То есть, то что было 1 станет 0, и наоборот.

Вот, например, операция ~52:

A 0 0 1 1 0 1 0 0
~A 1 1 0 0 1 0 1 1

Результатом будет 203 10

При использовании побитового отрицания знак результата всегда будет противоположен знаку исходного числа (при работе со знаковыми числами). Почему так происходит, узнаете прямо сейчас.

Дополнительный код

Здесь мне стоит рассказать вам немного о способе представления отрицательных целых чисел в ЭВМ, а именно о дополнительном коде (two’s complement). Не вдаваясь в подробности, он нужен для облегчения арифметики двоичных чисел.

Главное, что вам нужно знать о числах, записанных в дополнительном коде - это то, что старший разряд является знаковым. Если он равен 0, то число положительное и совпадает с представлением этого числа в прямом коде, а если 1 - то оно отрицательное. То есть, 10111101 - отрицательное число, а 01000011 - положительное.

Чтобы преобразовать отрицательное число в дополнительный код, нужно инвертировать все биты числа (то есть, по сути, использовать побитовое отрицание) и добавить к результату 1.

Например, если мы имеем 109:

A 0 1 1 0 1 1 0 1
~A 1 0 0 1 0 0 1 0
~A+1 1 0 0 1 0 0 1 1

Представленным выше методом мы получаем -109 в дополнительном коде.
Только что было представлено очень упрощенное объяснение дополнительного кода, и я настоятельно советую вам детальнее изучить эту тему.

Побитовый сдвиг влево

Побитовые сдвиги немного отличаются от рассмотренных ранее битовых операций. Побитовый сдвиг влево сдвигает биты своего операнда на N количество битов влево, начиная с младшего бита. Пустые места после сдвига заполняются нулями. Происходит это так:

A 1 0 1 1 0 1 0 0
A<<2 1 1 0 1 0 0 0 0

Интересной особенностью сдвига влево на N позиций является то, что это эквивалентно умножению числа на 2 N . Таким образом, 43<<4 == 43*Math.pow(2,4) . Использование сдвига влево вместо Math.pow обеспечит неплохой прирост производительности.

Побитовый сдвиг вправо

Как вы могли догадаться, >> сдвигает биты операнда на обозначенное количество битов вправо.

Если операнд положительный, то пустые места заполняются нулями. Если же изначально мы работаем с отрицательным числом, то все пустые места слева заполняются единицами. Это делается для сохранения знака в соответствии с дополнительным кодом, объясненным ранее.

Так как побитовый сдвиг вправо - это операция, противоположная побитовому сдвигу влево, несложно догадаться, что сдвиг числа вправо на N количество позиций также делит это число на 2 N . Опять же, это выполняется намного быстрее обычного деления.

Вывод

Итак, теперь вы знаете больше о битовых операциях и не боитесь их. Могу предположить, что вы не будете использовать >>1 при каждом делении на 2. Тем не менее, битовые операции неплохо иметь в своем арсенале, и теперь вы сможете воспользоваться ими в случае надобности или же ответить на каверзный вопрос на собеседовании.

C++. Логические операции. Поразрядные логические операции. Операции сдвига. Операция XOR

1. Для каких типов можно применять логические операции, поразрядные логические операции и операции сдвига?

Логические операции, поразрядные логические операции и операции сдвига можно использовать только для операндов целых типов.

2. Какие логические операции используются в C/C++?

В языке программирования C/C++ используются следующие логические операции:

  • && – логическое «И»;
  • || – логическое «ИЛИ»;
  • ! – логическое «НЕТ».

Результатом логических операций есть значение false или true . В языке C++ принято, что значение false считается равным 0, а значение true считается равным 1.

Отсюда можно сделать вывод, что false < true . Например:

// логические операции bool res; res = false < true ; // res = true
3. Таблица истинности логических операций

Таблица истинности логических операций && (логическое «И»), || (логическое «ИЛИ»), ! (логическое «НЕТ») имеет следующий вид:

В языке C/C++ принимается, что значение false равно 0, а значение true не равно 0 (любое ненулевое целочисленное значение).

4. Примеры использования логических операций в C++

Пример 1. Логическая операция в сочетании с логическим выражением

// логические операции bool res; int a, b; // операция && (AND) a = 8; b = 5; res = a && b; // res = True a = 0; res = a && b; // res = False // операция || (OR) a = 0; b = 0; res = a || b; // res = False b = 7; res = a || b; // res = True // операция! (логическое "НЕТ") a = 0; res = !a; // res = True a = 15; res = !a; // res = False

Пример 2. Логическая операция в условных выражениях. Приведен фрагмент кода, в котором логическая операция используется в операторе условного перехода if .

// логические операции в условных выражениях int a, b; bool res; a = 0; b = 3; res = false ; if (a && b) res = true ; // res = false a = 0; b = 7; if (a || b) res = true ; // res = true
5. Какие поразрядные логические операции используются в C/C++?

Язык С/С++ поддерживает следующие поразрядные логические операции :

  • & – поразрядное логическое И (AND );
  • ^ – поразрядное сложение по модулю 2 (XOR — исключающее ИЛИ);
  • | – поразрядное логическое ИЛИ (OR );
  • ~ – поразрядная инверсия (NOT ).

Операции & , ^ , | есть бинарными. Это означает, что они требуют двух операндов. Биты любого операнда сравниваются между собой по следующему правилу : бит в позиции 0 первого операнда сравнивается с битом в позиции 0 второго операнда. Затем бит в позиции 1 первого операнда сравнивается с битом в позиции 1 второго операнда. Так сравниваются все биты целочисленных операндов.

6. Таблица истинности поразрядных логических операций

Каждый бит результата определяется на основе двух операндов, которые являются битами, так как показано в таблице.

Инверсия требует единого операнда справа от знака ~ . Результат получается поразрядной инверсией всех битов операнда.

7. Пример работы с логическими побитовыми операциями

Пусть даны два числа 17 и 45 типа unsigned short int . Каждое из чисел занимает в памяти 1 байт или 8 бит. Ниже приведен пример того, как происходит вычисление для каждой побитовой операции

Как видно из примера, происходит выполнение заданной операции над каждым битом.

8. Какие операции сдвига используются в C/C++?

Язык С/С++ включают две операции поразрядного сдвига :

  • << – сдвиг влево значения операнда на заданное количество бит. Операнд размещается слева от знака операции. Число сдвигаемых бит указывается справа от знака операции;
  • >> – сдвиг вправо значения операнда на заданное количество бит. Операнд размещается слева от знака операции (<<). Количество сдвигаемых бит размещается справа от знака операции.

Выдвижные биты теряются, а «входят» нулевые биты. Сдвиг операндов влево на 1, 2, 3 и более разрядов – наиболее быстрый способ умножения на 2, 4, 8, … Сдвиг операндов вправо на 1, 2, 3 и более разрядов – наиболее быстрый способ деления на 2, 4, 8, …

Если в программе нужно, чтобы операция умножения целочисленных операндов на 2, 4, 8 и т.д. происходила максимально быстро, то целесообразно использовать операцию сдвига влево.

Это касается и случаев, когда нужно максимально быстро поделить целочисленный операнд на 2, 4, 8 и т.д. В этих случаях рекомендуется использовать сдвиг вправо.

9. Примеры использования операций сдвига в программе
// Операции сдвига int a; int b; int c; a = 15; b = -5; // сдвиг влево - умножение c = a << 1; // c = a * 2^1 = 30 c = b << 2; // c = b * 2^2 = -20 // сдвиг вправо - деление c = a >> 3; // c = a / 2^3 = 1 c = b >> 1; // c = b / 2^1 = -3
10. Какое отличие между логическими операциями и поразрядными логическими операциями?

В логических операциях сравнивается значение двух операндов целиком. Каждый из операндов может иметь значение true или false . Язык C/C++ допускает сравнение операндов, которые являются целыми числами. В этом случае целочисленное значение 0 соответствует значению false , а ненулевое (любое другое) значение соответствует значению true .

В этой статье мы поговорим о некоторых битовых операциях. Рассмотрим основные из них: XOR (исключающее ИЛИ), AND (И), NOT (НЕ) а также OR (ИЛИ).

Как известно, минимальной единицей измерения информации является бит , который хранит одно из 2-х значений: 0 (False , ложь) либо 1 (True , истина). Таким образом, битовая ячейка может одновременно находиться лишь в одном из двух возможных состояний.

Для манипуляций с битами используют определённые операции - логические или булевые . Они могут применяться к любому биту, вне зависимости от того, какое у него значение - ноль или единица. Что же, давайте посмотрим на примеры использования трёх основных логических операций.

Логическая операция AND (и)

AND обозначается знаком & .

Оператор AND выполняется с 2-мя битами, возьмём, к примеру, a и b. Результат выполнения операции AND равен 1, если a и b равняются 1. В остальных случаях результат равен 0. Например, с помощью AND вы можете узнать, чётное число или нет.

Посмотрите на таблицу истинности операции AND:

Логическая операция OR (ИЛИ)

Обозначается знаком | .

Оператор OR также выполняется с 2-мя битами (a и b). Результат равен 0, если a и b равны 0, иначе он равен 1. Смотрим таблицу истинности.

Логическая операция XOR (исключающее ИЛИ)

Оператор XOR обозначается ^ .

XOR выполняется с 2-мя битами (a и b). Результат выполнения операции XOR (исключающее ИЛИ ) равен 1, когда один из битов b или a равен 1. В остальных ситуациях результат применения оператора XOR равен 0.

Таблица истинности логической операции для XOR (исключающее ИЛИ) выглядит так:

Используя XOR (исключающее ИЛИ), вы можете поменять значения 2-х переменных одинакового типа данных, не используя временную переменную. А ещё, посредством XOR можно зашифровать текст, например:

String msg = "This is a message"; char message = msg.toCharArray(); String key = ".*)"; String encryptedString = new String(); for(int i = 0; i< message.length; i++){ encryptedString += message[i]^key.toCharArray(); }

Согласен, XOR - далеко не самый надёжный метод шифрования, но это не значит, что его нельзя сделать частью какого-либо шифровального алгоритма.

Логическая операция NOT (НЕ)

Это побитовое отрицание, поэтому выполняется с одним битом и обозначается ~ .

Результат зависит от состояния бита. Если он в нулевом состоянии, то итог операции - единица и наоборот. Всё предельно просто.

Эти 4 логические операции следует запомнить в первую очередь, т. к. с их помощью можно получить практически любой возможный результат. Также существуют такие операции, как << (побитовый сдвиг влево) и >> (побитовый сдвиг вправо).

Операция исключающее ИЛИ (неравнозначность, сложение по модулю два) обозначается символом и отличается от логического ИЛИ только приA=1 и B=1.

Таким образом, неравнозначность двух высказываний Х1 и Х2 называют такое высказывание Y, которое истинно тогда и только тогда, когда одно из этих высказываний истинно, а другое ложно.

Определение данной операции может быть записано в виде таблицы истинности (таблица 6):

Таблица 6 – Таблица истинности операции «ИСКЛЮЧАЮЩЕЕ ИЛИ»

Как видно из таблицы 6, логика работы элемента соответствует его названию.

Это тот же элемент «ИЛИ» с одним небольшим отличием. Если значение на обоих входах равно логической единице, то на выходе элемента «ИСКЛЮЧАЮЩЕЕ ИЛИ», в отличие от элемента «ИЛИ», не единица, а ноль.

Операция «ИСКЛЮЧАЮЩЕЕ ИЛИ» фактически сравнивает на совпадение два двоичных разряда.

Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет своё название и обозначение (таблица 7).

Таблица 7 – Основные логические операции

Обозначение

операции

Читается

Название операции

Альтернативные обозначения

Отрицание (инверсия)

Черта сверху

Конъюнкция (логическое умножение)

Дизъюнкция (логическое сложение)

Если … то

Импликация

Тогда и только тогда

Эквиваленция

Либо … либо

ИСКЛЮЧАЮЩЕЕ ИЛИ (сложение по модулю 2)

  1. Порядок выполнения логических операций в сложном логическом выражении

Система логических операций инверсии, конъюнкции, дизъюнкции позволяет построить сколь угодно сложное логическое выражение.

При вычислении значения логического выражения принят определённый порядок выполнения логических операций.

1. Инверсия.

2. Конъюнкция.

3. Дизъюнкция.

4. Импликация.

5. Эквивалентность.

Для изменения указанного порядка выполнения операций используются скобки.

  1. Логические выражения и таблицы истинности

    1. Логические выражения

Каждое составное высказывание можно выразить в виде формулы (логического выражения), в которую входят логические переменные, обозначающие высказывания, и знаки логических операций, обозначающие логические функции.

Для записи составного высказывания в виде логического выражения на формальном языке (языке алгебры логики) в составном высказывании нужно выделить простые высказывания и логические связи между ними.

Запишем в форме логического выражения составное высказывание «(2·2=5 или 2∙2=4) и (2∙2≠5 или 2∙2 4)».

Проанализируем составное высказывание. Оно содержит два простых высказывания:

А = «2 2=5»-ложно (0),

В = «2 2=4»-истинно (1).

Тогда составное высказывание можно записать в следующей форме:

«(А или В ) и (Ā или В )».

Теперь необходимо записать высказывание в форме логического выражения с учётом последовательности выполнения логических операций. При выполнении логических операций определён следующий порядок их выполнения:

инверсия, конъюнкция, дизъюнкция.

Для изменения указанного порядка могут использоваться скобки:

F = (A v В ) & (Ā v В ).

Истинность или ложность составных высказываний можно определять чисто формально, руководствуясь законами алгебры высказываний, не обращаясь к смысловому содержанию высказываний.

Подставим в логическое выражение значения логических переменных и, используя таблицы истинности базовых логических операций, получим значение логической функции:

F = (A v В) & (Ā v В) = (0 v 1) & (1 v 0) = 1 & 1 = 1.

      Таблицы истинности

Таблицы, в которых логические операции отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний, называются таблицами истинности.

Простые высказывания обозначаются переменными (например, A и B).

При построении таблиц истинности целесообразно руководствоваться определённой последовательностью действий:

    необходимо определить количество строк в таблице истинности. Оно равно количеству возможных комбинаций значений логических переменных, входящих в логическое выражение. Если количество логических переменных равно п, то:

количество строк = 2 n .

В нашем случае логическая функция

имеет 2 переменные и, следовательно, количество строк в таблице истинности должно быть равно 4;

    необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций.

В нашем случае количество переменных равно двум: А и В, а количество логических операций - пяти (таблица 8), то есть количество столбцов таблицы истинности равно семи;

    необходимо построить таблицу истинности с указанным количеством строк и столбцов, обозначить столбцы и внести в таблицу возможные наборы значений исходных логических переменных;

    необходимо заполнить таблицу истинности по столбцам, выполняя базовые логические операции в необходимой последовательности и в соответствии с их таблицами истинности.

Теперь мы можем определить значение логической функции для любого набора значений логических переменных.

Таблица 8 – Таблица истинности логической функции

функция , выполняемая ими, несколько сложнее, чем в случае элемента И или элемента ИЛИ. Все входы элементов Исключающее ИЛИ равноправны, однако ни один из входов не может заблокировать другие входы, установив выходной сигнал в уровень единицы или нуля. Таблица 4.1. Таблица истинности двухвходовых элементов исключающего ИЛИ
Вход 1 Вход 2 Выход
0 0 0
0 1 1
1 0 1
1 1 0


Рис. 4.1.

Под функцией Исключающее ИЛИ понимается следующее: единица на выходе появляется тогда, когда только на одном входе присутствует единица . Если единиц на входах две или больше, или если на всех входах нули, то на выходе будет нуль. Таблица истинности двухвходового элемента Исключающее ИЛИ приведена в табл. 4.1. Обозначения, принятые в отечественных и зарубежных схемах, показаны на рис. 4.1. Надпись на отечественном обозначении элемента Исключающее ИЛИ "=1" как раз и обозначает, что выделяется ситуация, когда на входах одна и только одна единица .

Элементов Исключающее ИЛИ в стандартных сериях немного. Отечественные серии предлагают микросхемы ЛП5 (четыре двухвходовых элемента с выходом 2С), ЛЛ3 и ЛП12, отличающиеся от ЛП5 выходом ОК. Слишком уж специфическая функция реализуется этими элементами.

С точки зрения математики, элемент Исключающее ИЛИ выполняет операцию так называемого суммирования по модулю 2. Поэтому эти элементы также называются сумматорами по модулю два. Как уже отмечалось в предыдущей лекции, обозначается суммирование по модулю 2 знаком плюса, заключенного в кружок.

Основное применение элементов Исключающее ИЛИ, прямо следующее из таблицы истинности , состоит в сравнении двух входных сигналов. В случае, когда на входы приходят две единицы или два нуля (сигналы совпадают), на выходе формируется нуль (см. табл. 4.1) . Обычно при таком применении на один вход элемента подается постоянный уровень, с которым сравнивается изменяющийся во времени сигнал, приходящий на другой вход. Но значительно чаще для сравнения сигналов и кодов применяются специальные микросхемы компараторов кодов , которые будут рассмотрены в следующей лекции.

В качестве сумматора по модулю 2 элемент Исключающее ИЛИ используется также в параллельных и последовательных делителях по модулю 2, служащих для вычисления циклических контрольных сумм. Но подробно эти схемы будут рассмотрены в лекциях 14,15.

Важное применение элементов Исключающее ИЛИ - это управляемый инвертор (рис. 4.2) . В этом случае один из входов элемента используется в качестве управляющего, а на другой вход элемента поступает информационный сигнал. Если на управляющем входе единица , то входной сигнал инвертируется, если же нуль - не инвертируется. Чаще всего управляющий сигнал задается постоянным уровнем, определяя режим работы элемента, а информационный сигнал является импульсным. То есть элемент Исключающее ИЛИ может изменять полярность входного сигнала или фронта, а может и не изменять в зависимости от управляющего сигнала .


Рис. 4.2.

В случае, когда имеется два сигнала одинаковой полярности (положительные или отрицательные), и при этом их одновременный приход исключается, элемент Исключающее ИЛИ может быть использован для смешивания этих сигналов (рис. 4.3) . При любой полярности входных сигналов выходные сигналы элемента будут положительными. При положительных входных сигналах элемент Исключающее ИЛИ будет работать как элемент 2ИЛИ, а при отрицательных он будет заменять элемент 2И-НЕ. Такие замены могут быть полезны в тех случаях, когда в схеме остаются неиспользованными некоторые элементы Исключающее ИЛИ. Правда, при этом надо учитывать, что задержка распространения сигнала в элементе Исключающее ИЛИ обычно несколько больше (примерно в 1,5 раза), чем задержка в простейших элементах И, И-НЕ, ИЛИ, ИЛИ-НЕ.